Difference between revisions of "Workdocumentation 2021-05-03"

From BITPlan cr Wiki
Jump to navigation Jump to search
Line 87: Line 87:
 
Ran 1 test in 0.557s
 
Ran 1 test in 0.557s
 
</pre>
 
</pre>
 +
= Observation =
 +
 +
== Relevance Matrix ==
 +
{| class="wikitable"
 +
|-
 +
!  !! top 10% !! top 20% !! top 30%
 +
|-
 +
| Letter || 1:P  || 1:P || 2: P, 2
 +
|-
 +
| Token ||  ||
 +
|-
 +
| Grammar structure ||  ||
 +
|}

Revision as of 07:38, 3 May 2021

Question

What happens if the relevance matrix approach is applied to proceedings title parsing (later: parsing in general)?

Assumption

Following a hierarchy of letter, token, grammatical structure and sentence along the relevance matrix path column first (depth first) leads to interesting observations.

Experiment

Hierarchy of: - Letter - Token - Grammatical structure - Sentence

Input: Proceedings titles of dblp conference entries.

Letter

def testMostCommonFirstLetter(self):
        '''
        get the most common first letters
        '''
        dblp,foundEvents=self.getEvents()
        self.assertTrue(foundEvents>43950)
        # collect first letters
        counter=Counter()
        total=0
        for eventId in dblp.em.events:
            if eventId.startswith("conf"):
                event=dblp.em.events[eventId]
                first=ord(event.title[0])
                counter[first]+=1
                total+=1
        bins=len(counter.keys())
        print(f"found {bins} different first letters in {total} titles")
        for o,count in counter.most_common(bins):
            c=chr(o)
            print (f"{c}: {count:5} {count/total*100:4.1f} %")
read 43976 Events from dblp in   0.2 s
found 46 different first letters in 43398 titles
P: 12599 29.0 %
2:  3526  8.1 %
I:  3515  8.1 %
A:  3296  7.6 %
C:  2333  5.4 %
S:  2260  5.2 %
1:  2105  4.9 %
T:  1559  3.6 %
M:  1312  3.0 %
E:  1252  2.9 %
F:  1246  2.9 %
D:  1177  2.7 %
R:   624  1.4 %
H:   578  1.3 %
N:   566  1.3 %
3:   564  1.3 %
W:   522  1.2 %
L:   502  1.2 %
G:   501  1.2 %
B:   479  1.1 %
4:   354  0.8 %
V:   334  0.8 %
K:   257  0.6 %
O:   255  0.6 %
5:   252  0.6 %
U:   236  0.5 %
9:   215  0.5 %
6:   211  0.5 %
7:   199  0.5 %
8:   187  0.4 %
J:   150  0.3 %
X:    88  0.2 %
Q:    76  0.2 %
e:    19  0.0 %
Z:    13  0.0 %
i:    12  0.0 %
p:     7  0.0 %
«:     5  0.0 %
(:     3  0.0 %
":     2  0.0 %
d:     2  0.0 %
f:     1  0.0 %
t:     1  0.0 %
s:     1  0.0 %
':     1  0.0 %
Y:     1  0.0 %
----------------------------------------------------------------------
Ran 1 test in 0.557s

Observation

Relevance Matrix

top 10% top 20% top 30%
Letter 1:P 1:P 2: P, 2
Token
Grammar structure