Difference between revisions of "Workdocumentation 2021-05-03"
Jump to navigation
Jump to search
Line 13: | Line 13: | ||
== Letter == | == Letter == | ||
+ | {{commit|host=https://github.com|path=WolfgangFahl|project=ProceedingsTitleParser|subject=adds testMostCommonFirstLetter experiment|name=Wolfgang Fahl|date=2021-05-03 08:39:45 +0200|hash=60381ce|storemode=subobject|viewmode=line}} | ||
<source lang='python'> | <source lang='python'> | ||
def testMostCommonFirstLetter(self): | def testMostCommonFirstLetter(self): | ||
Line 87: | Line 88: | ||
Ran 1 test in 0.557s | Ran 1 test in 0.557s | ||
</pre> | </pre> | ||
+ | |||
= Observation = | = Observation = | ||
Revision as of 07:40, 3 May 2021
Question
What happens if the relevance matrix approach is applied to proceedings title parsing (later: parsing in general)?
Assumption
Following a hierarchy of letter, token, grammatical structure and sentence along the relevance matrix path column first (depth first) leads to interesting observations.
Experiment
Hierarchy of: - Letter - Token - Grammatical structure - Sentence
Input: Proceedings titles of dblp conference entries.
Letter
def testMostCommonFirstLetter(self):
'''
get the most common first letters
'''
dblp,foundEvents=self.getEvents()
self.assertTrue(foundEvents>43950)
# collect first letters
counter=Counter()
total=0
for eventId in dblp.em.events:
if eventId.startswith("conf"):
event=dblp.em.events[eventId]
first=ord(event.title[0])
counter[first]+=1
total+=1
bins=len(counter.keys())
print(f"found {bins} different first letters in {total} titles")
for o,count in counter.most_common(bins):
c=chr(o)
print (f"{c}: {count:5} {count/total*100:4.1f} %")
read 43976 Events from dblp in 0.2 s found 46 different first letters in 43398 titles P: 12599 29.0 % 2: 3526 8.1 % I: 3515 8.1 % A: 3296 7.6 % C: 2333 5.4 % S: 2260 5.2 % 1: 2105 4.9 % T: 1559 3.6 % M: 1312 3.0 % E: 1252 2.9 % F: 1246 2.9 % D: 1177 2.7 % R: 624 1.4 % H: 578 1.3 % N: 566 1.3 % 3: 564 1.3 % W: 522 1.2 % L: 502 1.2 % G: 501 1.2 % B: 479 1.1 % 4: 354 0.8 % V: 334 0.8 % K: 257 0.6 % O: 255 0.6 % 5: 252 0.6 % U: 236 0.5 % 9: 215 0.5 % 6: 211 0.5 % 7: 199 0.5 % 8: 187 0.4 % J: 150 0.3 % X: 88 0.2 % Q: 76 0.2 % e: 19 0.0 % Z: 13 0.0 % i: 12 0.0 % p: 7 0.0 % «: 5 0.0 % (: 3 0.0 % ": 2 0.0 % d: 2 0.0 % f: 1 0.0 % t: 1 0.0 % s: 1 0.0 % ': 1 0.0 % Y: 1 0.0 % ---------------------------------------------------------------------- Ran 1 test in 0.557s
Observation
Relevance Matrix
top 10% | top 20% | top 30% | |
---|---|---|---|
Letter | 1:P | 1:P | 2: P, 2 |
Token | |||
Grammar structure |