The Relevance Matrix approach has been discussed in https://rq.bitplan.com/index.php/Hackathon_2021-04-27#Relevance_Matrix. It might be feasible to create a systematic analysis approach/design and solution approach based on this idea.
By walking the path from 1st decile down the dependency tree at each cell an observation is made:
If we find an element in a cell we'll then categorize it.
What happens if the relevance matrix approach is applied to proceedings title parsing (later: parsing in general)?
Following a hierarchy of letter, token, grammatical structure and sentence along the relevance matrix path column first (depth first) leads to interesting observations.
Hierarchy of: - Letter - Token - Grammatical structure - Sentence
Input: Proceedings titles of dblp conference entries.
The Relevance Matrix approach has been discussed in https://rq.bitplan.com/index.php/Hackathon_2021-04-27#Relevance_Matrix. It might be feasible to create a systematic analysis approach/design and solution approach based on this idea.
By walking the path from 1st decile down the dependency tree at each cell an observation is made:
If we find an element in a cell we'll then categorize it.
What happens if the relevance matrix approach is applied to proceedings title parsing (later: parsing in general)?
Following a hierarchy of letter, token, grammatical structure and sentence along the relevance matrix path column first (depth first) leads to interesting observations.
Hierarchy of: - Letter - Token - Grammatical structure - Sentence
Input: Proceedings titles of dblp conference entries.
def testMostCommonFirstLetter(self):
'''
get the most common first letters
'''
dblp,foundEvents=self.getEvents()
self.assertTrue(foundEvents>43950)
# collect first letters
counter=Counter()
total=0
for eventId in dblp.em.events:
if eventId.startswith("conf"):
event=dblp.em.events[eventId]
first=ord(event.title[0])
counter[first]+=1
total+=1
bins=len(counter.keys())
print(f"found {bins} different first letters in {total} titles")
for o,count in counter.most_common(bins):
c=chr(o)
print (f"{c}: {count:5} {count/total*100:4.1f} %")
read 43976 Events from dblp in 0.2 s found 46 different first letters in 43398 titles P: 12599 29.0 % 2: 3526 8.1 % I: 3515 8.1 % A: 3296 7.6 % C: 2333 5.4 % S: 2260 5.2 % 1: 2105 4.9 % T: 1559 3.6 % M: 1312 3.0 % E: 1252 2.9 % F: 1246 2.9 % D: 1177 2.7 % R: 624 1.4 % H: 578 1.3 % N: 566 1.3 % 3: 564 1.3 % W: 522 1.2 % L: 502 1.2 % G: 501 1.2 % B: 479 1.1 % 4: 354 0.8 % V: 334 0.8 % K: 257 0.6 % O: 255 0.6 % 5: 252 0.6 % U: 236 0.5 % 9: 215 0.5 % 6: 211 0.5 % 7: 199 0.5 % 8: 187 0.4 % J: 150 0.3 % X: 88 0.2 % Q: 76 0.2 % e: 19 0.0 % Z: 13 0.0 % i: 12 0.0 % p: 7 0.0 % «: 5 0.0 % (: 3 0.0 % ": 2 0.0 % d: 2 0.0 % f: 1 0.0 % t: 1 0.0 % s: 1 0.0 % ': 1 0.0 % Y: 1 0.0 % ---------------------------------------------------------------------- Ran 1 test in 0.557s
def testMostCommonFirstLetter(self):
'''
get the most common first letters
'''
dblp,foundEvents=self.getEvents()
self.assertTrue(foundEvents>43950)
# collect first letters
counter=Counter()
total=0
for eventId in dblp.em.events:
if eventId.startswith("conf"):
event=dblp.em.events[eventId]
first=ord(event.title[0])
counter[first]+=1
total+=1
bins=len(counter.keys())
print(f"found {bins} different first letters in {total} titles")
for o,count in counter.most_common(bins):
c=chr(o)
print (f"{c}: {count:5} {count/total*100:4.1f} %")
read 43976 Events from dblp in 0.2 s found 46 different first letters in 43398 titles P: 12599 29.0 % 2: 3526 8.1 % I: 3515 8.1 % A: 3296 7.6 % C: 2333 5.4 % S: 2260 5.2 % 1: 2105 4.9 % T: 1559 3.6 % M: 1312 3.0 % E: 1252 2.9 % F: 1246 2.9 % D: 1177 2.7 % R: 624 1.4 % H: 578 1.3 % N: 566 1.3 % 3: 564 1.3 % W: 522 1.2 % L: 502 1.2 % G: 501 1.2 % B: 479 1.1 % 4: 354 0.8 % V: 334 0.8 % K: 257 0.6 % O: 255 0.6 % 5: 252 0.6 % U: 236 0.5 % 9: 215 0.5 % 6: 211 0.5 % 7: 199 0.5 % 8: 187 0.4 % J: 150 0.3 % X: 88 0.2 % Q: 76 0.2 % e: 19 0.0 % Z: 13 0.0 % i: 12 0.0 % p: 7 0.0 % «: 5 0.0 % (: 3 0.0 % ": 2 0.0 % d: 2 0.0 % f: 1 0.0 % t: 1 0.0 % s: 1 0.0 % ': 1 0.0 % Y: 1 0.0 % ---------------------------------------------------------------------- Ran 1 test in 0.557s
# | key | count | % |
---|---|---|---|
total | 46 | 43398 | |
1 | P | 12599 | 29.03 |
2 | 2 | 3526 | 8.12 |
3 | I | 3515 | 8.10 |
4 | A | 3296 | 7.59 |
5 | C | 2333 | 5.38 |
6 | S | 2260 | 5.21 |
7 | 1 | 2105 | 4.85 |
8 | T | 1559 | 3.59 |
9 | M | 1312 | 3.02 |
10 | E | 1252 | 2.88 |
11 | F | 1246 | 2.87 |
12 | D | 1177 | 2.71 |
13 | R | 624 | 1.44 |
14 | H | 578 | 1.33 |
15 | N | 566 | 1.30 |
16 | 3 | 564 | 1.30 |
17 | W | 522 | 1.20 |
18 | L | 502 | 1.16 |
19 | G | 501 | 1.15 |
20 | B | 479 | 1.10 |
21 | 4 | 354 | 0.82 |
22 | V | 334 | 0.77 |
23 | K | 257 | 0.59 |
24 | O | 255 | 0.59 |
25 | 5 | 252 | 0.58 |
26 | U | 236 | 0.54 |
27 | 9 | 215 | 0.50 |
28 | 6 | 211 | 0.49 |
29 | 7 | 199 | 0.46 |
30 | 8 | 187 | 0.43 |
31 | J | 150 | 0.35 |
32 | X | 88 | 0.20 |
33 | Q | 76 | 0.18 |
34 | e | 19 | 0.04 |
35 | Z | 13 | 0.03 |
36 | i | 12 | 0.03 |
37 | p | 7 | 0.02 |
38 | « | 5 | 0.01 |
39 | ( | 3 | 0.01 |
40 | " | 2 | 0.00 |
41 | d | 2 | 0.00 |
42 | f | 1 | 0.00 |
43 | t | 1 | 0.00 |
44 | s | 1 | 0.00 |
45 | ' | 1 | 0.00 |
46 | Y | 1 | 0.00 |
Top categories: Letter and Digit.
top 10% | top 20% | top 30% | |
---|---|---|---|
Letter | 1:P | 1:P | 2: P, 2 |
Token | |||
Grammar structure |
That P is the most common first letter could be since the word "Proceedings" starts with "P" and might be one of the most common words
# | key | count | % |
---|---|---|---|
total | 90 | 809260 | |
1 | 2 | 96484 | 11.92 |
2 | I | 65214 | 8.06 |
3 | C | 62697 | 7.75 |
4 | S | 59363 | 7.34 |
5 | P | 50577 | 6.25 |
6 | o | 47073 | 5.82 |
7 | A | 40291 | 4.98 |
8 | 1 | 33935 | 4.19 |
9 | a | 26085 | 3.22 |
10 | M | 25474 | 3.15 |
11 | T | 19690 | 2.43 |
12 | W | 19391 | 2.40 |
13 | t | 18726 | 2.31 |
14 | D | 17672 | 2.18 |
15 | E | 16201 | 2.00 |
16 | U | 15969 | 1.97 |
17 | J | 15688 | 1.94 |
18 | N | 15309 | 1.89 |
19 | - | 14558 | 1.80 |
20 | F | 13717 | 1.70 |
21 | R | 13104 | 1.62 |
22 | B | 11044 | 1.36 |
23 | L | 10255 | 1.27 |
24 | G | 10170 | 1.26 |
25 | O | 9972 | 1.23 |
26 | V | 8218 | 1.02 |
27 | H | 8078 | 1.00 |
28 | i | 7781 | 0.96 |
29 | 3 | 5577 | 0.69 |
30 | f | 4769 | 0.59 |
31 | ( | 4738 | 0.59 |
32 | K | 4666 | 0.58 |
33 | 4 | 3501 | 0.43 |
34 | 5 | 3107 | 0.38 |
35 | 6 | 2910 | 0.36 |
36 | 8 | 2875 | 0.36 |
37 | 7 | 2832 | 0.35 |
38 | 9 | 2826 | 0.35 |
39 | ' | 2311 | 0.29 |
40 | w | 2124 | 0.26 |
41 | d | 2000 | 0.25 |
42 | c | 1614 | 0.20 |
43 | Q | 1210 | 0.15 |
44 | e | 975 | 0.12 |
45 | & | 929 | 0.11 |
46 | X | 802 | 0.10 |
47 | u | 695 | 0.09 |
48 | Y | 688 | 0.09 |
49 | Z | 686 | 0.08 |
50 | 0 | 632 | 0.08 |
# | key | count | % |
---|---|---|---|
total | 30492 | 809260 | |
1 | International | 26360 | 3.26 |
2 | on | 25486 | 3.15 |
3 | and | 24329 | 3.01 |
4 | Proceedings | 22995 | 2.84 |
5 | of | 21438 | 2.65 |
6 | the | 17733 | 2.19 |
7 | Conference | 14916 | 1.84 |
8 | - | 14527 | 1.80 |
9 | USA, | 9163 | 1.13 |
10 | Conference, | 8668 | 1.07 |
11 | Workshop | 7152 | 0.88 |
12 | in | 7106 | 0.88 |
13 | September | 6424 | 0.79 |
14 | June | 5651 | 0.70 |
15 | October | 4955 | 0.61 |
16 | IEEE | 4731 | 0.58 |
17 | Symposium | 4426 | 0.55 |
18 | July | 4349 | 0.54 |
19 | Information | 4170 | 0.52 |
20 | November | 3972 | 0.49 |
21 | for | 3798 | 0.47 |
22 | August | 3756 | 0.46 |
23 | Computer | 3685 | 0.46 |
24 | Systems | 3634 | 0.45 |
25 | Papers | 3411 | 0.42 |
26 | Systems, | 3373 | 0.42 |
27 | May | 3254 | 0.40 |
28 | 2018, | 3248 | 0.40 |
29 | 2017, | 3036 | 0.38 |
30 | 2019, | 2983 | 0.37 |
31 | 2016, | 2956 | 0.37 |
32 | Revised | 2948 | 0.36 |
33 | Selected | 2881 | 0.36 |
34 | December | 2879 | 0.36 |
35 | Workshop, | 2827 | 0.35 |
36 | 2015, | 2794 | 0.35 |
37 | Software | 2704 | 0.33 |
38 | ACM | 2687 | 0.33 |
39 | April | 2652 | 0.33 |
40 | Computing | 2373 | 0.29 |
41 | China, | 2339 | 0.29 |
42 | 2014, | 2321 | 0.29 |
43 | Germany, | 2319 | 0.29 |
44 | Part | 2240 | 0.28 |
45 | 2013, | 2214 | 0.27 |
46 | 2011, | 2207 | 0.27 |
47 | 2010, | 2106 | 0.26 |
48 | 2015 | 2101 | 0.26 |
49 | Italy, | 2072 | 0.26 |
50 | 2009, | 2056 | 0.25 |
# | key | count | % |
---|---|---|---|
total | 93 | 809260 | |
1 | 781321 | 96.55 | |
2 | 2 | 2337 | 0.29 |
3 | 3 | 2152 | 0.27 |
4 | 1 | 2099 | 0.26 |
5 | 4 | 1955 | 0.24 |
6 | 5 | 1865 | 0.23 |
7 | 6 | 1716 | 0.21 |
8 | 7 | 1622 | 0.20 |
9 | 8 | 1490 | 0.18 |
10 | 9 | 1451 | 0.18 |
11 | 10 | 1380 | 0.17 |
12 | 14 | 979 | 0.12 |
13 | 15 | 873 | 0.11 |
14 | 16 | 748 | 0.09 |
15 | 17 | 680 | 0.08 |
16 | 18 | 637 | 0.08 |
17 | 19 | 592 | 0.07 |
18 | 20 | 509 | 0.06 |
19 | 21 | 480 | 0.06 |
20 | 22 | 392 | 0.05 |
21 | 23 | 379 | 0.05 |
22 | 24 | 353 | 0.04 |
23 | 25 | 332 | 0.04 |
24 | 26 | 289 | 0.04 |
25 | 27 | 245 | 0.03 |
26 | 28 | 230 | 0.03 |
27 | 30 | 198 | 0.02 |
28 | 29 | 183 | 0.02 |
29 | 31 | 157 | 0.02 |
30 | 11 | 130 | 0.02 |
31 | 32 | 114 | 0.01 |
32 | 12 | 104 | 0.01 |
33 | 13 | 100 | 0.01 |
34 | 34 | 98 | 0.01 |
35 | 33 | 94 | 0.01 |
36 | 35 | 83 | 0.01 |
37 | 36 | 81 | 0.01 |
38 | 37 | 79 | 0.01 |
39 | 38 | 77 | 0.01 |
40 | 39 | 64 | 0.01 |
41 | 40 | 60 | 0.01 |
42 | 60 | 55 | 0.01 |
43 | 41 | 52 | 0.01 |
44 | 42 | 41 | 0.01 |
45 | 44 | 31 | 0.00 |
46 | 43 | 29 | 0.00 |
47 | 46 | 27 | 0.00 |
48 | 47 | 25 | 0.00 |
49 | 49 | 24 | 0.00 |
50 | 45 | 23 | 0.00 |