
Mitigating Query Rot: Using snapquery for
Sustainable SPARQL Query Set Management

Wolfgang Fahl1,2 , Christoph Lange1,3 , Tim Holzheim1 , and Stefan
Decker1,3

1 RWTH Aachen University, Computer Science i5, Aachen, Germany
2 BITPlan GmbH, Willich, Germany

3 Fraunhofer FIT, Sankt Augustin, Germany

Abstract. Will the “cats” Wikidata SPARQL query example still work
in the future? While link rot has been a known issue, the Query Rot
problem has not been investigated much in the past. We introduce an
approach for quality assessment and refactoring of query sets and evalu-
ate its implementation for SPARQL.
By applying information hiding and dependency inversion principles, we
hide the details of the query and introduce the snapquery SPARQL query
endpoint middleware to maintain expected query behavior independently
of technical details, context, and even, as a future option, the query lan-
guage. “snapquery cats” is designed to work consistently in the future no
matter what changes. This approach enables the swapping of endpoints,
conceals the complexity of (federated) queries, and manages SPARQL
query sets by making the queries FAIR first-class citizens of the Knowl-
edge Graph infrastructure. The increased abstraction aligns well with
state-of-the-art Artificial Intelligence approaches that allow the use of
natural language input to generate query sets.
This novel, systematic, and semi-automatic approach is generally useful
in most knowledge graph management scenarios. It allows for the gath-
ering of query metadata from real-world environments on the fly, sup-
porting the creation of test suites, benchmarks, challenges, dashboards,
and other analytical applications for query performance and health moni-
toring. Our approach contributes to advancing knowledge engineering by
bridging gaps between knowledge graphs, software engineering, and large
language models.
We reproduce use cases of the Scholia, QLever and general Wikidata
projects to demonstrate functionality and measure non-functional quality
improvements over those projects.
We conclude that advancing Knowledge Graph management requires
1. introducing queries as FAIR first-class citizens by developing platform-
independent named parameterized queries (thus confirming a 2019 pro-
posal), 2. structured, implementation-independent error messages, and
3. shifting to higher abstraction levels that support human and machine
generated general text input. We suggest corresponding improvements
to the SPARQL standard.

Keywords: SPARQL · Query Rot · Knowledge Graph Management · Quality
Assessment · Refactoring · snapquery · Benchmarking · Sustainability

https://orcid.org/0000-0002-0821-6995
https://orcid.org/0000-0001-9879-3827
https://orcid.org/0000-0003-2533-6363
https://orcid.org/0000-0001-6324-7164

2 Wolfgang Fahl, Christoph Lange, Tim Holzheim, and Stefan Decker

1 Introduction

Will the “cats” Wikidata SPARQL query example still work in the future? List-
ing 1.1 shows the SPARQL code and Table 1 the first six result rows4.

Listing 1.1: SPARQL Query for Cats
"Cats" example SPARQL query
https :// www.wikidata.org
/wiki/Wikidata:SPARQL_query_service/queries/examples#Cats
SELECT ?item ?itemLabel
WHERE
{

?item wdt:P31 wd:Q146. # Must be a cat
SERVICE wikibase:label {

bd:serviceParam
wikibase:language "[AUTO_LANGUAGE],en".

}
}

Table 1: Cats query result
item itemLabel
http://www.wikidata.org/entity/Q378619 CC
http://www.wikidata.org/entity/Q498787 Muezza
http://www.wikidata.org/entity/Q677525 Orangey
http://www.wikidata.org/entity/Q851190 Mrs. Chippy
http://www.wikidata.org/entity/Q893453 Unsinkable Sam
http://www.wikidata.org/entity/Q1050083 Catmando
.

The Cats query most likely will not run in a few years due to Query Rot. The
query might not run on endpoints other than the currently in-use “Blazegraph”
SPARQL endpoint provided as the Wikidata Query Service by the Wikimedia
Foundation.

Semantic web technologies that utilize RDF and SPARQL (see Section 3.2))
are commonly used as Knowledge Graph infrastructure. A prevalent issue anal-
ogous to link rot (see Section 3.3) in web content is Query Rot for the necessary
data retrieval components. Query Rot refers to the gradual deterioration of query
validity over time due to changes in the Query Execution Context (QEC) (see
Section 4). The crucial reliability, robustness, and other non functional quality
aspects of KG systems are challenged by Query Rot.

Query Rot is mitigated by repeatedly refactoring queries – an error-prone,
manual and time-consuming task, which can only be done by knowledge engi-
4 The table was generated with the command line snapquery –queryName cats
–limit 6 –format latex

Mitigating Query Rot with snapquery 3

neering experts. snapquery is a tool and method that facilitates the refactoring of
queries using a systematic approach, which can be automated and accessed via
(standard compliant) APIs as a middleware. Queries are treated as first-class
FAIR [35] citizens having a PID5 in the form of a domain/namespace/name
combination with a link to the original query source(s). The principle of infor-
mation hiding is applied via the Dependency Inversion Principle (see Section 3.1)
(part of the SOLID approach in software engineering). Queries are divided into
a black-box abstract part that only provides a query signature, consisting of the
query PID and its parameters and variables and the white-box part detailing the
Query Execution Context.

The snapquery separation of concerns targets different audiences - the black-
box part for general end users and system integrators and the white-box part
for scholars, developers, people running the infrastructure and others with an
interest in all graphic detail.

snapquery was introduced at the Wikimedia 2024 Hackathon [6], motivated
by needs of the Scholia community arising from the upcoming Wikidata graph
split (see Section 2.1).

snapquery allows for faster systematic and semi-automatic refactoring of
queries by assigning metadata about functional and non-functional aspects to
each named query and grouping sets of queries by domain and namespace. The
knowledge about whether a query (or set of queries) works at all in a given
Query Execution Context 2.2 and, e.g., how fast and reliable it runs is stored
as metadata and used as a basis for standard refactoring and user feedback ac-
tivities. The metadata is gathered proactively and automatically and annotated
and analyzed with Large-Language-Model (LLM) support.

We aim at changing the mindset of KG project stakeholders working with
SPARQL query sets. Our approach has potential value in mitigating software ar-
chitecture and engineering challenges that plague current knowledge engineering
projects.

This paper is structured around three primary use cases which are presented
in section 2.1:

– Wikidata – SPARQL examples, tutorials and usage
– Scholia – Scholarly publishing
– QLever – SPARQL engine development

Section 2 introduces and defines the term Query Rot based on a black-box and
white-box definition of Query Execution Context targeted to the audiences men-
tioned above. Section 3 contains prior work and work we build on. Section 4
presents snapquery as a method and tool for mitigating Query Rot. Section 5
details the implementation and Section 6 the evaluation of snapquery. Section 7
concludes and suggests future work.

Further background material and research documentation is available at Cat-
egory:snapquery [8] in our research wiki.

5 FAIR and PIDs are well explained in our CEUR-WS semantification work [10]

4 Wolfgang Fahl, Christoph Lange, Tim Holzheim, and Stefan Decker

2 Query Rot

2.1 Motivating use cases

Table 2: Motivating Usecases and Query Sets
Usecase Namespace@Domain Name Example # Queries
Wikidata examples Cats 302

@wikidata.org
short-url Japanese_Libraries_Details 100
@wikidata.org
federated-queries Editors of the WOP 2014 11
@bitplan.com

Subtotal 413
Scholia named-queries author_list-of-publications 373

@scholia.toolforge.org
challenge AllVolumes 28
@ceur-ws.org
WikidataThesisToolkit LSE-doctoral-theses 27
@wikidata.org

Subtotal 428
QLever issues-wikidata Issue858-query1 181

@qlever.cs.uni-freiburg.de
performance-dblp All papers published in SIGIR 6
@qlever.cs.uni-freiburg.de
examples PublicationTypes 5
@dblp.org

Subtotal 192
Total 1033

Table 2 shows the relevant use cases and query sets that have motivated the
snapquery approach and tool and that are presented in this work.

Wikidata SPARQL examples and usage The Wikidata SPARQL Service
examples wiki page (https://www.wikidata.org/wiki/Wikidata:SPARQL_query_
service/queries/) has accumulated over 300 queries since 2016, illustrating
Wikidata’s usage. These queries are expected to work against the Wikidata ser-
vice endpoint. However, this work reveals that this is not always the case and
introduces methods to systematically analyze the reasons.

Wikidata’s query service (https://query.wikidata.org/) offers short URLs
for entered queries. A random set of 100 such queries has been included for in-
vestigation in this study and automatically annotated with an LLM (see Sec-
tion 6.4).

Additionally, a set of manually curated federated queries completes the Wiki-
data use case query sets, totaling 413 queries.

https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/
https://query.wikidata.org/

Mitigating Query Rot with snapquery 5

Scholia and Scholarly Publishing Scholia(https://scholia.toolforge.
org/) is a project allowing users to search, browse, and analyze scholarly pub-
lishing data curated in the Wikidata knowledge graph [24]. It uses named pa-
rameterized queries, with Python and JavaScript as programming languages,
SPARQL for querying, and Jinja Templates for query parameterization.

Scholia faces challenges due to Wikidata’s size limitations. The Blazegraph
SPARQL engine backing Wikidata can hold up to 4 Terabytes, which is in-
sufficient for the vast amount of scholarly publishing data available [11]. The
Wikimedia Foundation’s decision to split the graph and migrate scholarly data
to its own knowledge graph potentially invalidates all 373 current Scholia queries.

The query sets of 428 queries for the Scholia use case comes from multiple
sources: 373 named queries extracted from Scholia’s GitHub repositorym 28
Semantic Publishing Challenge [18] queries presented in our research Semantic
MediaWiki, and WikidataThesisToolkit [36] queries documented on a wiki page.

QLever SPARQL Engine Development QLever, developed at the Univer-
sity of Freiburg, is a high-performance SPARQL Engine written in C++ [3]. It
is a potential replacement for Blazegraph as Wikidata’s main SPARQL engine.
QLever is an open-source project [1] but is not yet feature-complete.

We proposed using Scholia queries as a test suite for QLever6. This work
extends that idea by demonstrating how to construct a testsuite from SPARQL
queries extractable from GitHub issues. A typical issue, such as the issue #896
CONCAT implementation7, follows a standard situation/action/expected result
format, which can be used for systematic testing and development.

The query set of 192 queries for the QLever use case is derived from queries
extracted from QLever’s GitHub issues, performance queries related to DBLP
documented on a wiki page in the GitHub repository, and example queries from
the QLever-UI portal for the DBLP example dataset.

2.2 Definitions

We present two complementary definitions of Query Execution Context
(QEC): Definition 2 – a concrete/white-box definition for scholars, developers,
people running the infrastructure and others with an interest in all graphic de-
tail. Definition 3 – an abstract/black-box definition for general end users, system
integrators and the general public.

The white-box definition illustrates the high dimensionality of the solution
space and can not be elaborated in all detail here, while the black-box definition
describes the simplified problem space that we intend to focus on in the core
Query Rot Definition 4.

Definition 1 (Named Parameterized Query).
A Named Parameterized Query Q is a tuple (N,P, V), where:

6 https://github.com/ad-freiburg/qlever/issues/859
7 https://github.com/ad-freiburg/qlever/issues/896

https://scholia.toolforge.org/
https://scholia.toolforge.org/
https://github.com/ad-freiburg/qlever/issues/859
https://github.com/ad-freiburg/qlever/issues/896
https://github.com/ad-freiburg/qlever/issues/896

6 Wolfgang Fahl, Christoph Lange, Tim Holzheim, and Stefan Decker

– N is the unique name of the query, structured as name−−namespace@domain
– P = {(p1 : t1), . . . , (pk : tk)} is the set of typed input parameters
– V = {(v1 : t1), . . . , (vm : tm)} is the set of typed output variables

The unique name convention is inspired by the Java Naming Convention [25].

Definition 2 (Query Execution Context (concrete/white-box)). A Query
Execution Context QEC is a function QEC : QS×G×B×EE×L → R, where:

– QS = {qi | i ∈ I} is a set of Named Parameterized Queries, where each qi
is of type Q as defined in Definition 1, and I is an index set,

– G = (V,E) is the knowledge graph being queried,
– B = {b1, b2, . . . , bk} represents a set of boundary conditions,
– EE = {e1, e2, . . . , em} represents a set of execution environment parameters,
– L represents the query language standard and feature set,
– R = (S, T,M) is the result, where S is an output stream, T is the content

type, and M is metadata about the query execution.

Definition 3 (Query Execution Context (abstract/black-box)). A Query
Execution Context QEC is a function QEC : QS ×G → R, where:

– QS = {q1, q2, ..., qn} is a set of NamedQueries as defined in Definition 1,
– G is the knowledge graph being queried,
– R = (S, T,M) is the result, where S is an output stream, T is the content

type, and M is metadata about the query execution.

The black-box definition reduces the complexity of the problem space to
QS ×KG , while the white-box definition exposes the full dimensionality of the
solution space as QS ×G× B × E × L. The abstraction enables more effective
knowledge engineering by simplifying the user’s conceptual model while allowing
for complex optimizations in the implementation and providing standardized
APIs independent of the hidden details.

An example of a Query Execution Context in practice would consist of
QS being the Scholia Queryset “named_queries@scholia.toolforge.org” (see Sec-
tion 2.1) consisting of more than 373 queries in the context of Wikidata as the
knowledge graph G. Boundary conditions B include legal rules such as data pro-
tection and copyright laws, and limits set by organizational rules. The execution
environment EE describes the Wikimedia Foundation’s data center running a
cluster of Blazegraph instances and the 1 minute time out for the public Wiki-
data Query Service. L represents the SPARQL 1.1 language with Blazegraph
extensions.

For the specific query
author_events––named_queries@scholia.toolforge.org, we have:
N = author_events––named_queries@scholia.toolforge.org
P = {(author : Q80)} – Q80 is the Wikidata ID for Tim Berners-Lee
V = {(Date: xsd:dateTime), (Event: IRI), (EventLabel: xsd:string), (EventUri:

IRI), (Roles: xsd:string), (Locations: xsd:string)}
An example output row for R = (S, T,M):

Mitigating Query Rot with snapquery 7

S: HTML table containing a row: Date: 2009-10-25,
Event: http://www.wikidata.org/entity/Q48026503, EventLabel: The 8th Inter-
national Semantic Web Conference, EventUri: /event/Q48026503, Roles: author,
Locations: Washington, D.C.

T : HTML
M : {execution time: 0.4 seconds, result count: 25}

Definition 4 (Query Rot). Query Rot is a phenomenon that occurs when a
Query Execution Context QEC, which previously produced satisfactory results
for all queries q ∈ QS, experiences degradation or failure of query executions
due to changes in underlying system components, despite no relevant changes to
the query set QS or knowledge graph G. Query Rot of a QEC manifests when
for some q and some input parameter set of QS

– q fails to execute,
– q returns unexpected, or inconsistent results, or
– the metadata of an execution q fails to meet specified functional or non-

functional criteria or boundary conditions.

In the context of the white-box definition, Query Rot typically arises from un-
accounted changes in:

– L: the query language standard or feature set,
– EE: the execution environment,
– B: the implicit or explicit boundary conditions, or
– G: the knowledge graph data or schema.

From the black-box perspective, Query Rot is observed as a change in the rela-
tionship between inputs (QS and KG) and output R, without apparent changes
to these visible components.

3 Background and Related Work

3.1 Software Engineering Principles

Parnas introduced Information Hiding as a core principle of software engineer-
ing in his paper “On the Criteria to be Used in Decomposing Systems into Mod-
ules” [26]. He proposes modularization as a strategy to improve software quality.
Parnas argues that instead of the conventional flowchart-based structure, a sys-
tem decomposition approach should be applied: based on “information hiding”,
it groups modules by hidden design decisions rather than processing steps.

Martin proposed the Dependency Inversion Principle [22] stating, “Depend
upon Abstractions. Do not depend upon concretions”. This principle is a key
strategy for achieving systematic information hiding. It advocates for the use
of black-box intermediary interfaces to abstract away technical white-box imple-
mentation details, thereby reducing coupling between components and enhancing
modularity, flexibility, and maintainability of software systems – thus reducing
development time in the long run.

A comprehensive description of the state-of-the art of Continuous Integration
(CI) and Continuous Delivery (CD) is given by Van Merode [23]

8 Wolfgang Fahl, Christoph Lange, Tim Holzheim, and Stefan Decker

3.2 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is the standard query
language for RDF [5] data, recommended by the W3C. Since its introduction
in 2008 [28], SPARQL has undergone several revisions, with SPARQL 1.1 being
the current version as of 2013 [16].

SPARQL allows for complex queries on linked RDF datasets by mapping
variables to solutions represented as multisets of triples. Note that the results
might not necessarily be “truly tabular” [13].

SPARQL has been the focus of research for the past decades, prominently
featured in conference series such as the International Semantic Web Conference
(ISWC), the Extended Semantic Web Conference (ESWC), the World Wide Web
Conference (WWW), and the International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW).

The traditional research approach applies a “white-box” view where the em-
phasis is on the technical and theoretical underpinnings and all details are ex-
plored such as in ontology design having researchers and developers as a target
group.

The formal analysis of the semantics of the SPARQL language by Perez et
al. [27] is an example. It establishes the algebraic foundation of SPARQL based
on graph patterns and RDF triples, contrasting with relational algebra, which
operates on tables and lacks native support for optional data and flexible pattern
matching.

The “white-box” view with end-users and system-integrators as a target group
is somewhat underrepresented. Paul Warren et al.’s work [32,31,33,34] is a no-
table exception. His work is rooted in the semantification of the BT Library,
which is related to our scholarly publishing use case (Section 2.1). According
to Warren [34], query expert knowledge is rare – 74% of his study participants
claimed to have no knowledge at all. In a 2018 study [33], the minority of par-
ticipants were end-users and large databases with billions of triples were in the
majority to be targeted by query sets. Timeouts were named as the main diffi-
culty with SPARQL.

Johannes Lorey proposes Latency, Throughput, Execution Time of Joins as
metrics for the Quality of Query Execution Contexts [19]. He also worked on
discovering query templates from query logs [21] which supports the proposal of
introducing named parameterized queries. His PhD thesis “What’s in a Query:
Analyzing, Predicting, and Managing Linked Data Access” [20] elaborates on
the details.

The SPARQL standard does not call for enforcing structured error messages
on failure: “The response body of a failed query request is implementation de-
fined. Implementations may use HTTP content negotiation to provide human-
readable or machine-processable (or both) information about the failed query
request.” [15]

The introduction of parameterized queries to SPARQL was proposed as an
addition to the W3C Standard by Vladimir Alexiev [2] in 2019. As of 2024 there
are still only implementation specific solutions.

Mitigating Query Rot with snapquery 9

3.3 Link Rot

Link rot describes cases where hyperlinks are getting invalid over time [29]. This
happens when the target resource has been relocated to a new address (“re-
route”) or has become permanently unavailable “dead”. A study on “link decay”
by Hennessy for the time span 1999–2010 found that the median lifespan of
web pages was 9.3 years [17]. Link rot breaks KG functionality and leads to
frustrations, particularly in scholarly publishing contexts where citations rely on
links [4]. One cause of Link rot is an orphaned responsibility for maintaining a
link. Zhou et al. propose archiving links and predicting potential link failure to
mitigate and avoid “404 Not Found” errors [37].

3.4 Query Rot

Query Rot The issue of query performance and stability over time (see Defini-
tion 4), has been indirectly addressed in various studies on SPARQL querying
such as Verborgh et al. “Querying Datasets on the Web with High Availability”[30],
but has not been explicitly named or systematically studied before our work.

4 Mitigating Query Rot using snapquery

The first step in mitigating Query Rot is to proactively identify when a query
is no longer working as expected. Snapquery makes query sets available in com-
puter readable form and has a command line and web interface to execute a
query set against fitting endpoints and knowledge graphs. A whole Query Set of
a project / Query Execution Context may be analyzed automatically this way,
e.g., in a Continuous Integration (CI) and Continuous Delivery (CD) pipeline.

Figure 1 shows an example analysis. A difference in the number of failures
and successes for a set of endpoints indicates potential Query Rot.

In the example, the endpoints “Wikidata” and “Wikidata-scatter” should be-
have 100% identically but they do not. Wikidata-qlever performing differently
on the examples and named-queries namespaces is to be expected since it does
not support Blazegraph special syntax and is not feature complete yet.

Fig. 1: Query Set Success Overview

10 Wolfgang Fahl, Christoph Lange, Tim Holzheim, and Stefan Decker

4.1 Queries as FAIR first-class KG citizens

To make Queries FAIR, we propose to use persistent identifiers for Queries.
Some SPARQL environments, such as the Wikidata Query Service and QLever,
already offer the capability to create short URLs for queries, which may be
used to uniquely identify a certain query text. Since the same query might
have different textual representations such as versions or platform specific adap-
tions, this approach is not fit to create persistent identifiers. Instead we pro-
pose to create PIDs from unique fully identifying names as per Definition 1
"Cats––examples@wikidata.org" is such a PID that may be translated to a
corresponding URL that is useable in the RDF context and for RESTful APIs.

4.2 Local Query Execution Context Knowledge Graph

We propose a query management Knowledge Graph based on the core entities
Query, Endpoint, SPARQL-Engine, Graph and Execution which may be run
locally.

Using such a local KG snapquery overcomes current limitations of SPARQL
by introducing platform-independent named parameterized queries and struc-
tured error reports 8.

Figure 2 shows a UML class diagram for the core entities of the snapquery
Query Execution Context KG.

Fig. 2: UML class diagram for core QEC entities

8 (see Section 7.2) for corresponding SPARQL standard changes as future work

Mitigating Query Rot with snapquery 11

4.3 Semantification Workflow for Query Sets

Fig. 3: Semantification Workflow for a Query Execution Context

The flowchart in Figure 3 shows the snapquery Workflow for Query Execution
Contexts (QEC), including semantification and agile refactoring with the goal
of QEC optimization (see also wiki page9).

The process starts with FAIR Query Set resources (e.g., Wikipedia pages,
GitHub issues) containing computer-readable queries. These are annotated using
LLMs, human input, or specialized software, and stored in JSON format for
import and visualization.

The Agile Refactoring Loop analyzes queries within a QEC, links them to
Knowledge Graphs and endpoints, and modifies QEC elements and queries to
improve execution. This iterative process continues until satisfactory quality is
achieved, balancing all QEC aspects. The goal is to be less error-prone, faster
and need less sophisticated humans in the workflow and allow for proactive and
automatic testing of query sets, e.g., as part of a CI/CD pipeline.

5 snapquery Implementation

The snapquery project is hosted on GitHub [14] and is available under the
Apache-2.0 license. Links to further details and demos are found in the README.

The snapquery library is implemented in Python 3.9 or later. It utilizes a
number of open source libraries for GUI, SPARQL, HTTP and Wiki handling,
9 https://cr.bitplan.com/index.php/QEC_Semantification_Workflow

https://cr.bitplan.com/index.php/QEC_Semantification_Workflow

12 Wolfgang Fahl, Christoph Lange, Tim Holzheim, and Stefan Decker

authentication and other common tasks. Parts of the snapquery code have been
developed with LLM support and a test-first attitude. snapquery is published
via PyPI (version 0.0.12 as of 2024-07-12) and may be run locally.

snapquery is designed to be a SPARQL endpoint compatible middleware with
RESTful APIs and a meta-query facility.

The snapquery design involves tradeoffs: it requires websockets and low-
latency networks for optimal function, especially in real-time GUI interactions.
Additionally, while aiming for compatibility with standard SPARQL endpoints,
providing named parameterized queries is a non-standard feature necessitating
client code modifications.

Running your own copies of Wikidata [12] is recommended but not necessary.
We intend to make snapqquery the backbone of an alternative Wikidata mirrors
infrastructure as a mitigation measure.

6 Evaluation

6.1 Cats Wikidata Example

As stated in Section 1, most likely even the most prominent Wikidata SPARQL
query example “Cats” will suffer from query rot. Applying the snapquery ap-
proach, we created an alternative query. Even though the query only consists of
one query pattern, it uses the Wikidata label service10, thus making the query
incompatible with other endpoints and query engines, as the label service is
only available in the Blazegraph Wikidata infrastructure. This can be seen in
Figure 4a, as the query only executes successfully on the Wikidata endpoint
and on wikidata-scatter, a copy running the same infrastructure as Wikidata.
On other endpoints running a copy of Wikidata with a different query engine,
we see that the query fails every time with either a QueryBadFormed or End-
pointInternalError error.By changing the query to directly query the rdfs:label
instead of using the label service, the query becomes endpoint independent and
executes on all endpoints successfully without increasing the execution time, as
shown in Figure 4b.

6.2 Wikidata Thesis Toolkit

Query Rot can also appear when underlying data and schema changes, neces-
sitating maintenance and updates for entire query sets. This challenge became
particularly acute for the Wikidata Thesis Toolkit. Helen Williams and Ruth
Elder, who are not SPARQL experts, have invested considerable time and ef-
fort 11 into creating a set of 27 queries for the toolkit. When they learned about
the upcoming graph split of Wikidata12, they feared their hard work might be
invalidated. The prospect of evaluating and potentially adjusting each query for
10 a convention that xLabel is treated as a Label for x automatically
11 alongside their primary job responsibilities.
12 https://m.wikidata.org/wiki/Wikidata:SPARQL_query_service/WDQS_graph_split

https://m.wikidata.org/wiki/Wikidata:SPARQL_query_service/WDQS_graph_split

Mitigating Query Rot with snapquery 13

(a) Original query (b) Alternative query

Fig. 4: Execution statistics by endpoint of the cats query

correctness and reliability seemed daunting. We offered to demonstrate how the
snapquery approach could address their concerns quickly and sustainably. The
steps taken were: 1. importing the query set from the wiki page of the Wikidata
Thesis Toolkit, 2. Monitoring the execution status for the complete set against
multiple endpoints, 3. Quick determination of whether a failing query is due to
endpoint issues or data changes requiring query adjustments.

To ensure compatibility, we evaluated all 27 queries, identifying and adjust-
ing 6/27 queries affected by the split. Both original and adjusted query sets
were executed against the graph split test endpoint for validation. This process
took less than a day, significantly reducing Helen and Ruth’s anxiety about the
impending changes.

6.3 General Failure reasons

snapquery provides an error message handling that filters and categorizes im-
plementation dependent error message.

Table 3 shows error categories across different domains, namespaces, and
endpoints as a result of trying the queries of Table 2 against different endpoints.
Syntax errors are the most common issue, particularly for the

named_queries@scholia.toolforge.org namespace, while endpoint internal er-
rors and timeouts also pose significant challenges, especially for the

examples@wikidata.org namespace. Systematic approaches may now be ap-
plied to solve the issues by further subcategorizing the errors.

6.4 LLM performance

Generating query annotations For the short-url@wikidata.org Query Set
the annotation has been done automatically with gpt-3.5-turbo and gpt-4 via
API. All 100 examples were successfully given a title, name and description. The

14 Wolfgang Fahl, Christoph Lange, Tim Holzheim, and Stefan Decker

Table 3: Top Query failure error categories grouped by namespace@domain
Error
Category

Total Namespace@Domain Endpoint

Syntax
Error

3790 named_queries@scholia (2044),
examples@wikidata (788),
issues.wikidata@qlever (612), . . .

wikidata-triply (1100),
wikidata-qlever (996), . . .

EndPoint-
Internal

1142 examples@wikidata (624),
short_url@wikidata (242),
named_queries@scholia (140), . . .

wikidata-openlinksw (642),
wikidata-qlever (474), . . .

Timeout 399 examples@wikidata (180),
issues.wikidata@qlever (148), . . .

wikidata-triply (342),
wikidata (57)

Service
Unavailable

82 issues.wikidata@qlever (26),
examples@wikidata (20), . . .

wikidata-triply (82)

Other 56 named_queries@scholia (28),
examples@wikidata (24), . . .

wikidata (18),
wikidata-openlinksw (14),
. . .

Too Many
Requests

20 named_queries@scholia (12),
examples@wikidata (4), . . .

wikidata (18),. . .

result is in wikidata-short-urls.json in the samples of the GitHub project
and available in the public demos. The prompt log is in our research wiki [7].

The average execution time was 3.2 secs. The total number of tokens for all
100 API calls was 0.1 million.

The precision, recall and F1 values are close enough to 1 (with gpt-4) on
human inspection to not bother about the quality since the execution time and
cost for the task can not be beaten by a human by a big margin. As of 2024-07
the cost would be less than a cent per annotation.

Since the code for this task is available in our repository, we could simply run
it on thousands of Wikidata short URLs to get a large query set, which would
be a good basis for further research. Providing the LLM annotation as service
can easily be added to the query nomination feature of snapquery; this is just a
matter of funding.

Query rewriting We intend to test query rewriting with our tool to find how
well standard refactoring activities would be supported by different Conversa-
tional AI tools. For a pre-selection of capable LLM, we did an experiment that
is documented in our research wiki [9]. The prompts were: Rewrite to make
blazegraph independent followed by the Cats Wikidata example source code
as shown in Section 1. If the LLM did not produce a working SPARQL query, a
second attempt was made using the prompt: the result does neither work
on the wikidata query service nor on qlever

Only one out of 4 LLMs could do the task on first attempt: ChatGPT-4o.
Claude AI succeeded on the second attempt, Pi AI and Google Gemini failed.
We intend to do further research with ChatGPT and Claude AI using the APIs.

Mitigating Query Rot with snapquery 15

7 Conclusion and Future Work

7.1 Conclusion

We introduce Query Rot and propose making Queries FAIR first-class citizens
in a Knowledge Graph capturing Query Execution Context (QEC) metadata.
The snapquery method and tool enable a semantification workflow for Query
Sets, systematically improving QEC quality faster and with less expert support.
This approach separates concerns using a black-box named parameterized view
for end-users and system integrators, while hiding details of the white-box view
(visible for developers and scholars). As a middleware, snapquery provides hot-
swappable queries, allowing preparation and testing of alternatives for upcoming
changes such as the Wikidata graph split. The Wikidata Thesis Toolkit case
(27 queries) demonstrates snapquery’s ability to enable proactive refactoring on
QEC changes, particularly benefiting non-SPARQL specialists. This approach
can be extrapolated to larger cases such as Scholia (373 queries) and QLever
(192 queries), potentially saving significant time and resources in maintaining
and adapting larger query sets. By providing a framework for adapting to QEC
changes, snapquery allows domain experts to focus on their primary tasks rather
than worrying about knowledge graph query infrastructure.

7.2 Future Work

We intend to finalize the work on the three use cases presented – providing
benchmarks, test suites and challenges based on the corresponding Query Sets.
Prior SPARQL query log work may be revisited using the snapquery approach
with the goal to make the results more stable against QEC changes along the
same lines.

The LLM supported query refactoring activities for Scholia and QLever with
the goal of integrating snapquery into the CI/CD pipelines will be in our focus.

Developing a comprehensive Query Execution Context Ontology is a worth-
while research goal.

We propose the following improvements to the W3C SPARQL standard:
1. Native support for named parameterized queries. 2. Standardized metadata
for queries. 3. Structured error reporting. 4. Default prefix declarations per QEC.
5. Generally making queries FAIR first-class citizens.

7.3 Acknowledgements

We thank the Wikimedia hackathon 2024 contributors and the Scholia commu-
nity and Hannah Bast and the QLever team for their open-source collaboration.
Special thanks Helen Williams, Ruth Elder and Denis Priskorn for their valuable
input. We acknowledge all researchers in Knowledge Graph management and
SPARQL optimization. Finally, we appreciate our colleagues at RWTH Aachen
University and Fraunhofer FIT for their feedback and support.

16 Wolfgang Fahl, Christoph Lange, Tim Holzheim, and Stefan Decker

References

1. AD Freiburg: Qlever: The efficient query engine. https://github.com/
ad-freiburg/qlever (2024), https://github.com/ad-freiburg/qlever, gitHub
repository

2. Alexiev, V.: Query Parameterization · Issue #57 · w3c/sparql-dev — github.com.
https://github.com/w3c/sparql-dev/issues/57 (2019), [Accessed 12-07-2024]

3. Bast, H., Buchhold, B.: Qlever: A query engine for efficient sparql+text search. In:
Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-
agement. CIKM ’17, ACM (Nov 2017). https://doi.org/10.1145/3132847.3132921,
http://dx.doi.org/10.1145/3132847.3132921

4. Coble, Z., Karlin, J.: Reference rot in the digital humanities literature: An analysis
of citations containing website links in DHQ. Digit. Humanit. Q. 17(1) (2023),
http://www.digitalhumanities.org/dhq/vol/17/1/000662/000662.html

5. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax.
https://www.w3.org/TR/rdf11-concepts/ (2014), accessed: 2024-07-10]

6. Fahl, W.: T363894 Introduce Named Queries and Named Query Middleware
to wikidata — phabricator.wikimedia.org. https://phabricator.wikimedia.org/
T363894 (2024), [Accessed 12-07-2024]

7. Fahl, W.: Workdocumentation 2024-05-12 - research wiki — cr.bitplan.com.
https://cr.bitplan.com/index.php/Workdocumentation_2024-05-12#LLM_
Query_name_annotation (2024), [Accessed 12-07-2024]

8. Fahl, W., Holzheim, T.: Category:Snapquery - research Wiki — cr.bitplan.com.
https://cr.bitplan.com/index.php/Category:Snapquery (2024), [Accessed 12-
07-2024]

9. Fahl, W., Holzheim, T.: Snapquery Cats LLM Rewrite Experiment - research
wiki — cr.bitplan.com. https://cr.bitplan.com/index.php/Snapquery_Cats_
LLM_Rewrite_Experiment (2024), [Accessed 12-07-2024]

10. Fahl, W., Holzheim, T., Lange, C., Decker, S.: Semantification of ceur-ws with
wikidata as a target knowledge graph. In: Joint Proceedings of TEXT2KG 2023
and BiKE 2023. CEUR Workshop Proceedings (2023), https://ceur-ws.org/
Vol-3447/Text2KG_Paper_13.pdf

11. Fahl, W., Holzheim, T., Lange, C., Decker, S.: Sempubflow: A novel scientific
publishing workflow using knowledge graphs, wikidata, and llms – the ceur-ws use
case (2024), manuscript submitted for publication

12. Fahl, W., Holzheim, T., Westerinen, A., Lange, C., Decker, S.: Getting and host-
ing your own copy of wikidata. In: 3rd Wikidata Workshop 2022. Proceedings.
Fraunhofer-Gesellschaft (2022). https://doi.org/10.24406/PUBLICA-976, https:
//publica.fraunhofer.de/handle/publica/437118

13. Fahl, W., Holzheim, T., Westerinen, A., Lange, C., Decker, S.: Property cardinal-
ity analysis to extract truly tabular query results from wikidata. In: Kaffee, L.A.,
Razniewski, S., Amaral, G., Alghamdi, K.S. (eds.) Proceedings of the 3rd Wiki-
data Workshop 2022, co-located with the 21st International Semantic Web Confer-
ence (ISWC2022). CEUR Workshop Proceedings, vol. 3262. Wikidata Workshop
2022, CEUR Workshop Proceedings (Oct 2022), https://ceur-ws.org/Vol-3262/
paper7.pdf

14. Fahl, W., Holztheim, T., Priskorn, D.: GitHub - WolfgangFahl/snapquery: Fron-
tend to Introduce Named Queries and Named Query Middleware to wikidata —
github.com. https://github.com/WolfgangFahl/snapquery (2024), [Accessed 12-
07-2024]

https://github.com/ad-freiburg/qlever
https://github.com/ad-freiburg/qlever
https://github.com/ad-freiburg/qlever
https://github.com/w3c/sparql-dev/issues/57
https://doi.org/10.1145/3132847.3132921
http://dx.doi.org/10.1145/3132847.3132921
http://www.digitalhumanities.org/dhq/vol/17/1/000662/000662.html
https://www.w3.org/TR/rdf11-concepts/
https://phabricator.wikimedia.org/T363894
https://phabricator.wikimedia.org/T363894
https://cr.bitplan.com/index.php/Workdocumentation_2024-05-12#LLM_Query_name_annotation
https://cr.bitplan.com/index.php/Workdocumentation_2024-05-12#LLM_Query_name_annotation
https://cr.bitplan.com/index.php/Category:Snapquery
https://cr.bitplan.com/index.php/Snapquery_Cats_LLM_Rewrite_Experiment
https://cr.bitplan.com/index.php/Snapquery_Cats_LLM_Rewrite_Experiment
https://ceur-ws.org/Vol-3447/Text2KG_Paper_13.pdf
https://ceur-ws.org/Vol-3447/Text2KG_Paper_13.pdf
https://doi.org/10.24406/PUBLICA-976
https://publica.fraunhofer.de/handle/publica/437118
https://publica.fraunhofer.de/handle/publica/437118
https://ceur-ws.org/Vol-3262/paper7.pdf
https://ceur-ws.org/Vol-3262/paper7.pdf
https://github.com/WolfgangFahl/snapquery

Mitigating Query Rot with snapquery 17

15. Feigenbaum, L., Williams, G.T., et al.: Sparql 1.1 protocol. Tech. rep., W3C (2013),
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

16. Harris, S., Seaborne, A., et al.: Sparql 1.1 query language. Tech. rep., W3C (2013),
https://www.w3.org/TR/sparql11-query/

17. Hennessey, J., Ge, S.X.: A cross disciplinary study of link decay and
the effectiveness of mitigation techniques. BMC Bioinformatics 14 (2013).
https://doi.org/10.1186/1471-2105-14-s14-s5

18. Lange, C., Di Iorio, A.: Semantic publishing challenge – assessing the quality of
scientific output. In: Communications in Computer and Information Science, pp.
61–76. Springer International Publishing (2014). https://doi.org/10.1007/978-3-
319-12024-9_8, https://doi.org/10.1007/978-3-319-12024-9_8

19. Lorey, J.: Sparql endpoint metrics for quality-aware linked data con-
sumption. In: Proceedings of International Conference on Information In-
tegration and Web-based Applications & Services. IIWAS ’13, ACM (Dec
2013). https://doi.org/10.1145/2539150.2539240, http://dx.doi.org/10.1145/
2539150.2539240

20. Lorey, J.: What’s in a Query: Analyzing, Predicting, and Managing Linked Data
Access. Dissertation zur erlangung des akademischen grades doktor der ingenieur-
wissenschaften (dr.-ing.), University of Potsdam, Potsdam, Germany (Mar 2014)

21. Lorey, J., Naumann, F.: Detecting SPARQL Query Templates for Data Prefetching,
p. 124–139. Springer Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38288-8_9, http://dx.doi.org/10.1007/978-3-642-38288-8_9

22. Martin, R.C.: Design principles and design patterns (2000), https:
//web.archive.org/web/20150906155800/http://www.objectmentor.com/
resources/articles/Principles_and_Patterns.pdf, originally published on
objectmentor.com. Archived by the Wayback Machine on September 6, 2015

23. van Merode, H.: Continuous Integration (CI) and Continuous Delivery
(CD): A Practical Guide to Designing and Developing Pipelines. Apress
(2023). https://doi.org/10.1007/978-1-4842-9228-0, http://dx.doi.org/10.1007/
978-1-4842-9228-0

24. Nielsen, F.Å., Mietchen, D., Willighagen, E.: Scholia, scientometrics and wiki-
data. In: The Semantic Web: ESWC 2017 Satellite Events. p. 237–259. Springer
International Publishing (2017). https://doi.org/10.1007/978-3-319-70407-4_36,
http://dx.doi.org/10.1007/978-3-319-70407-4_36

25. Oracle: Java naming conventions. https://www.oracle.com/java/technologies/
javase/codeconventions-namingconventions.html (1999), [Accessed 13-07-
2024]

26. Parnas, D.L.: On the criteria to be used in decomposing systems into
modules. Communications of the ACM 15(12), 1053–1058 (Dec 1972).
https://doi.org/10.1145/361598.361623, http://dx.doi.org/10.1145/361598.
361623

27. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. ACM
Transactions on Database Systems (TODS) 34(3), 1–45 (2009)

28. Prud’hommeaux, E., Seaborne, A., et al.: SPARQL Query Language for
RDF — w3.org. W3c recommendation, W3C (2008), https://www.w3.org/TR/
rdf-sparql-query/, [Accessed 2024-06-26]

29. Tyler, D.C., McNeil, B.: Librarians and link rot: A comparative analysis with
some methodological considerations. portal: Libraries and the Academy 3, 615–
632 (2003). https://doi.org/10.1353/pla.2003.0098

https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.1186/1471-2105-14-s14-s5
https://doi.org/10.1007/978-3-319-12024-9_8
https://doi.org/10.1007/978-3-319-12024-9_8
https://doi.org/10.1007/978-3-319-12024-9_8
https://doi.org/10.1145/2539150.2539240
http://dx.doi.org/10.1145/2539150.2539240
http://dx.doi.org/10.1145/2539150.2539240
https://doi.org/10.1007/978-3-642-38288-8_9
https://doi.org/10.1007/978-3-642-38288-8_9
http://dx.doi.org/10.1007/978-3-642-38288-8_9
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://web.archive.org/web/20150906155800/http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
https://doi.org/10.1007/978-1-4842-9228-0
http://dx.doi.org/10.1007/978-1-4842-9228-0
http://dx.doi.org/10.1007/978-1-4842-9228-0
https://doi.org/10.1007/978-3-319-70407-4_36
http://dx.doi.org/10.1007/978-3-319-70407-4_36
https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html
https://www.oracle.com/java/technologies/javase/codeconventions-namingconventions.html
https://doi.org/10.1145/361598.361623
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1145/361598.361623
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://doi.org/10.1353/pla.2003.0098

18 Wolfgang Fahl, Christoph Lange, Tim Holzheim, and Stefan Decker

30. Verborgh, R., Hartig, O., Meester, B.D., Haesendonck, G., Vocht, L.D., Sande,
M.V., Cyganiak, R., Colpaert, P., Mannens, E., de Walle, R.V.: Querying datasets
on the web with high availability. In: Lecture Notes in Computer Science, In-
ternational Semantic Web Conference. pp. 180–196. Springer, Springer Interna-
tional Publishing (2014). https://doi.org/10.1007/978-3-319-11964-9_12, http:
//dx.doi.org/10.1007/978-3-319-11964-9_12

31. Warren, P.: Knowledge management and the semantic web: From sce-
nario to technology. IEEE Intelligent Systems 21(1), 53–59 (Jan 2006).
https://doi.org/10.1109/mis.2006.12, http://dx.doi.org/10.1109/MIS.2006.12

32. Warren, P., Alsmeyer, D.: The digital library: a case study in intelli-
gent content management. Journal of Knowledge Management 9(5), 28–39
(Oct 2005). https://doi.org/10.1108/13673270510622438, http://dx.doi.org/10.
1108/13673270510622438

33. Warren, P., Mulholland, P.: Using SPARQL – The Practitioners’ Viewpoint, p.
485–500. Springer International Publishing (2018). https://doi.org/10.1007/978-3-
030-03667-6_31, http://dx.doi.org/10.1007/978-3-030-03667-6_31

34. Warren, P., Mulholland, P.: A Comparison of the Cognitive Difficulties
Posed by SPARQL Query Constructs, p. 3–19. Springer International Publish-
ing (2020). https://doi.org/10.1007/978-3-030-61244-3_1, http://dx.doi.org/
10.1007/978-3-030-61244-3_1

35. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., Bouw-
man, J., Brookes, A.J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S.,
Evelo, C.T., Finkers, R., Gonzalez-Beltran, A., Gray, A.J., Groth, P., Goble, C.,
Grethe, J.S., Heringa, J., ’t Hoen, P.A., Hooft, R., Kuhn, T., Kok, R., Kok, J.,
Lusher, S.J., Martone, M.E., Mons, A., Packer, A.L., Persson, B., Rocca-Serra,
P., Roos, M., van Schaik, R., Sansone, S.A., Schultes, E., Sengstag, T., Slater,
T., Strawn, G., Swertz, M.A., Thompson, M., van der Lei, J., van Mulligen,
E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J.,
Mons, B.: The FAIR guiding principles for scientific data management and stew-
ardship. Scientific Data 3(1) (mar 2016). https://doi.org/10.1038/sdata.2016.18,
https://doi.org/10.1038/data.2016.18

36. Williams, H.K.R., Elder, R.: Introducing the wikidata thesis toolkit. Paper pre-
sented at the CILIP Metadata and Discovery Group Conference: "ReDiscov-
ery", IET Birmingham: Austin Court, Birmingham, United Kingdom (2023),
http://eprints.lse.ac.uk/120224/, accessed: 2023-07-13

37. Zhou, K., Grover, C., Klein, M., Tobin, R.: No more 404s: Predicting refer-
enced link rot in scholarly articles for pro-active archiving. In: Proceedings of
the 15th ACM/IEEE-CS Joint Conference on Digital Libraries. ACM (2015).
https://doi.org/10.1145/2756406.2756940

https://doi.org/10.1007/978-3-319-11964-9_12
http://dx.doi.org/10.1007/978-3-319-11964-9_12
http://dx.doi.org/10.1007/978-3-319-11964-9_12
https://doi.org/10.1109/mis.2006.12
http://dx.doi.org/10.1109/MIS.2006.12
https://doi.org/10.1108/13673270510622438
http://dx.doi.org/10.1108/13673270510622438
http://dx.doi.org/10.1108/13673270510622438
https://doi.org/10.1007/978-3-030-03667-6_31
https://doi.org/10.1007/978-3-030-03667-6_31
http://dx.doi.org/10.1007/978-3-030-03667-6_31
https://doi.org/10.1007/978-3-030-61244-3_1
http://dx.doi.org/10.1007/978-3-030-61244-3_1
http://dx.doi.org/10.1007/978-3-030-61244-3_1
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/data.2016.18
http://eprints.lse.ac.uk/120224/
https://doi.org/10.1145/2756406.2756940

	Mitigating Query Rot: Using snapquery for Sustainable SPARQL Query Set Management

